
Rapid GUI Application Development with Python

Volker Kuhlmann

Kiwi PyCon 2009 — Christchurch

7 November 2009

Copyright c© 2009 by Volker Kuhlmann
Released under Creative Commons Attribution Non-commercial Share-alike 3.0[1]

Abstract

Options and tools for rapid desktop GUI application
development using Python are examined, with a list of
options for each stage of the tool chain.

Keywords

kiwipycon, kiwipycon09, Python, GUI, RAD, GUI
toolkit, GUI builder, IDE, application development,
multi-platform

1 Introduction

GUI options are examined for Python with respect to
performance, ease of use, runtime, and platform porta-
bility. Emphasis is put on platform-independence and
free open source, however, commercial options are in-
cluded.

This paper is a summary of the conference presenta-
tion. The related slides are available online[2]. A full
paper is planned.

The following components of the tool chain are dis-
cussed:

• Python interpreter
• GUI toolkit
• IDE (Integrated Development Environment)
• GUI builder
• Debugger
• Database
• Testing
• Application packaging

2 Python Interpreter

Getting the Python interpreter up and running is the
easiest part of the tool chain, and is achieved by simply
installing the latest stable version for your platform—
currently 2.6 or 3.1. The 3.x version is not totally back-
wards compatible. Pre-compiled packages are avail-
able for each platform.

For a well-written easy to understand introduction to
Python programming, see the book by Hetland[3].

3 GUI toolkit

The GUI toolkit provides the graphical user interface
(GUI) elements, or widgets, like buttons, scrollbars,
text boxes, label fields, tree view lists, file-open dia-
logues and so on. These widgets are an integral and
essential part of the user interface.

Most of these widget collections are available as a sys-
tem library and as such are used not only by Python.
The best known ones are Qt and GTK, others are Mo-
tif/lesstif, Tk, athena. Java has its own. The main dif-
ferences are in features, ease of use, native look-and-
feel, and license.

To use these widget libraries with Python, a wrapper is
needed.

The main GUI toolkits for Python are Tkinter, wx-
Python, PyGTK and PyQt/PySide. Polo published a
very good discussion of their merits[4]. A detailed
reference for Python Qt programming is in the book
by Summerfield[5].

4 IDE

The Integrated Development Environment is like a
workbench. It always consists of an editor, and pro-

1



vides quick access to other tools. Often it also gives
quick access to relevant documentation.

Desirable editor features include:

• Code completion, e.g. as soon as an identifier is
typed enough to be unambiguous.

• Calltips—a popup with e.g. available methods
and attributes when typing a ’.’ after an object
name.

The IDE should give easy access to tools like:

• Debugger. Hovering over a variable to inspect
(and modify) its value is a convenient feature.

• Code profiler
• Report generators, e.g. for code or database struc-

tures.
• Version control system.

Common choices of IDEs are:

• Eclipse / PyDev
FOSS, well supported. Top-ranking.

• BoaConstructor
Includes GUI builder. For wxWidgets.

• Wing IDE
Commercial (free for established FOSS projects).

• Eric
Includes GUI builder (Qt Designer).

• Komodo
Commercial.

• Spyder
Aimed at science users.

• Emacs/vim
Not really modern as far as IDE goes, but still
used by many.

5 GUI builder

A GUI builder allows arrangement of widgets graph-
ically. It generates code or a description (typically
in XML format) which can then be used by the GUI
toolkit. These are specific to the GUI toolkit. Popular
choices (by toolkit) are:

• wxPython
– BoaConstructor
– XRCed
– WxDesigner (commercial)

• PyGTK
– wxGlade / Autoglade
– Gazpacho

• PyQt / PySIDE
– Qt Designer

• Tkinter
– SpecTCL with a suitable conversion tool

6 Debugger

The debugger can be integrated into the IDE, or stand-
alone. IDEs with integrated debuggers are Eclipse (us-
ing PyDev), Wing IDE, or Komodo. Stand-alone de-
buggers are the winpdb GUI to common command-
line debuggers like pydb, or ddd (Unix/Linux only).

7 Database

All commonly used databases can also be used from
Python programs. Bindings are used to interface
to these databases. Common database choices are
SQLite, which keeps all data in a single file and needs
very little if any setting up, or the more heavy-duty
MySQL and PostgreSQL.

All can be accessed through a common uniform
Python SQL database API, which allows to write pro-
grams to be more or less independent of which DB is
used, as long as only those features are used which are
offered by all databases.

A higher-level database-interface is desirable which
does not require the programmer to write SQL directly,
to reduce development time (write other Python code
rather than debug SQL statements).

buzhug implements a database in pure Python which
is accessed without SQL, but it is not as performant.

8 Testing

A large number of stand-alone solutions exist for dif-
ferent purposes and methodologies like unit testing or
black box or white box testing. They are listed in the
Python Testing Tools Taxonomy[6].

9 Application Packaging

Several methods exist for publishing Python applica-
tions. Ideally one would use the target-platform’s pre-
ferred method, e.g. a package file to be installed by the
system’s package manager, or executable to run. Cre-
ating the installables is somewhat tedious, however it
is necessary when distributing only pre-compiled bi-
naries. A platform-independent method for deploy-
ing the application easily would be a user-friendly
solution—but there does not seem to be one. See
Richard Jones’ excellent summary[7].

2



10 Summary

Writing good-looking GUI applications with Python
quickly is possible. The most important decisions are
which GUI toolkit and which IDE to use.

Installing the full tool chain is time-consuming be-
cause investigating the available options and deciding
what is best-suited takes too long. The full version
of this paper will attempt to improve this situation by
listing combinations for each of the tool chain compo-
nents and their respective merits.

References

[1] http://creativecommons.org/licenses/by-nc-sa/3.0/.

[2] http://volker.top.geek.nz/linux/
presentation/RapidGUIwithPython.pdf,
http://volker.top.geek.nz/linux/presentation/
RapidGUIwithPython-notes.pdf.

[3] M. L. Hetland, Beginning Programming: From
Novice to Professional, 2nd ed. Apress, Sep.
2008.

[4] G. Polo, “PyGTK, PyQT, Tkinter and wxPython
comparison,” The Python Papers, vol. 3, no. 1,
pp. 26–37, Mar. 2008. [Online]. Available:
http://pythonpapers.org/archive/TPP3 1.pdf

[5] M. Summerfield, Rapid GUI Programming with
Python and Qt, 1st ed. Prentice Hall PTR, Oct.
2007.

[6] http://pycheesecake.org/wiki/
PythonTestingToolsTaxonomy.

[7] http://www.mechanicalcat.net/richard/log/Python/
Sane Python application packaging.

3

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://volker.top.geek.nz/linux/presentation/RapidGUIwithPython.pdf
http://volker.top.geek.nz/linux/presentation/RapidGUIwithPython.pdf
http://volker.top.geek.nz/linux/presentation/RapidGUIwithPython-notes.pdf
http://volker.top.geek.nz/linux/presentation/RapidGUIwithPython-notes.pdf
http://pythonpapers.org/archive/TPP3_1.pdf
http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy
http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy
http://www.mechanicalcat.net/richard/log/Python/Sane_Python_application_packaging
http://www.mechanicalcat.net/richard/log/Python/Sane_Python_application_packaging

	1 Introduction
	2 Python Interpreter
	3 GUI toolkit
	4 IDE
	5 GUI builder
	6 Debugger
	7 Database
	8 Testing
	9 Application Packaging
	10 Summary

